Extensions 1→N→G→Q→1 with N=D12:6C22 and Q=C2

Direct product G=NxQ with N=D12:6C22 and Q=C2
dρLabelID
C2xD12:6C2248C2xD12:6C2^2192,1352

Semidirect products G=N:Q with N=D12:6C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D12:6C22:1C2 = D12.3D4φ: C2/C1C2 ⊆ Out D12:6C22488+D12:6C2^2:1C2192,308
D12:6C22:2C2 = D12.14D4φ: C2/C1C2 ⊆ Out D12:6C22484D12:6C2^2:2C2192,621
D12:6C22:3C2 = C42:8D6φ: C2/C1C2 ⊆ Out D12:6C22244D12:6C2^2:3C2192,636
D12:6C22:4C2 = C24.23D4φ: C2/C1C2 ⊆ Out D12:6C22484D12:6C2^2:4C2192,719
D12:6C22:5C2 = D12:18D4φ: C2/C1C2 ⊆ Out D12:6C22248+D12:6C2^2:5C2192,757
D12:6C22:6C2 = D12.38D4φ: C2/C1C2 ⊆ Out D12:6C22488-D12:6C2^2:6C2192,760
D12:6C22:7C2 = D8:13D6φ: C2/C1C2 ⊆ Out D12:6C22484D12:6C2^2:7C2192,1316
D12:6C22:8C2 = SD16:13D6φ: C2/C1C2 ⊆ Out D12:6C22484D12:6C2^2:8C2192,1321
D12:6C22:9C2 = S3xC8:C22φ: C2/C1C2 ⊆ Out D12:6C22248+D12:6C2^2:9C2192,1331
D12:6C22:10C2 = D8:4D6φ: C2/C1C2 ⊆ Out D12:6C22488-D12:6C2^2:10C2192,1332
D12:6C22:11C2 = D12.32C23φ: C2/C1C2 ⊆ Out D12:6C22488+D12:6C2^2:11C2192,1394
D12:6C22:12C2 = D12.33C23φ: C2/C1C2 ⊆ Out D12:6C22488-D12:6C2^2:12C2192,1395
D12:6C22:13C2 = C12.C24φ: trivial image484D12:6C2^2:13C2192,1381

Non-split extensions G=N.Q with N=D12:6C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D12:6C22.1C2 = D12.2D4φ: C2/C1C2 ⊆ Out D12:6C22488-D12:6C2^2.1C2192,307
D12:6C22.2C2 = C24.44D4φ: C2/C1C2 ⊆ Out D12:6C22484D12:6C2^2.2C2192,736

׿
x
:
Z
F
o
wr
Q
<